Description
Representation The TB2 profile is a shaft seal consisting of a single outer metal cage, a main sealing lip with an integral spring, and an additional anti-contamination sealing lip. * Good radial stiffness, especially for large diameters* Good assembly stability, preventing kickback effect* Sealing for low and high viscosity fluids* Modern primary sealing lip with low radial force* Protects against unwanted air pollutants Application Shaft sealingMotorPumpTransmissionTemperature | None -30°C/+100°C |
Pressure | None 30 MPa |
Speed | None 1.0 m/s |
Medias | None Mineral hydraulic oils |
METAL CAGE – SPRING
The table below shows the materials that we can offer for metal cages and springs.
Application | Material | Standard | Characteristics |
Metal cage | Non-alloy standard steel | AISI 1010 (DIN 1624) |
Cold rolled steel |
Metal cage | Nickel chrome steel | AISI 304 (DIN 1.4301 – V2A) |
Standard stainless steel |
Metal cage and spring | Chrome-nickel-molybdenum steel | AISI 316 (DIN 1.4401 – V4A) |
Stainless steel highly resistant to corrosion |
Spring | Steel for springs | AISI 1070 – 1090 DIN 17223 |
Cold drawn carbon steel wire |
Spring | Nickel chrome steel | AISI 302 (DIN 1.4300) |
Stainless steel for springs with a high carbon content |
ACM
Polymers containing ethyl acrylate (or butyl acrylate) have a small amount of monomer, which is necessary for cross-linking; ACM is a material with better heat resistance than NBR. It is often used for automatic gearboxes.
Chemical resistance | Mineral oils (motor oils, gear box oils, ATF oils) Atmospheric and ozone agents |
---|---|
Compatibility issue | Glycol-based brake fluids (Dot 3 & 4) Aromatic and chlorinated hydrocarbons Water and steam Acids, alkalis and amines |
Temperature range | -25°C to + 150°C (short-term peak at +160°C) -35°C / +150°C with particular ACMs |
AEM
As a methyl acrylate and ethylene copolymer, AEM is considered to be more resistant to heat than ACM. Its characteristics make it an intermediary between ACM and FKM.
Chemical resistance | Cooling fluids Aggressive mineral oils Atmospheric agents Water |
---|---|
Compatibility issue | Aromatic solvents Strong acids Brake fluids Gearbox oils ATF oils |
Temperature range | – 40°C to + 150°C |
CR
This CR-based rubber is used in the refrigeration industry and for ventilation systems. This chloroprene was the first synthetic rubber to be developed and marketed.
Chemical resistance | Paraffinic mineral oils. Silicone oils and greases. Water and water-based solvents for use at low temperatures Refrigerant fluids. Ammoniac. Carbon dioxide. Atmospheric and ozone agents. |
Limited chemical resistance | Naphthenic mineral oils. Aliphatic hydrocarbons (propane, butane, petroleum) Glycol-based brake fluids |
Compatibility issue | Aromatic hydrocarbons (benzene) Chlorinated hydrocarbons (trichlorethylene) Polar solvents (ketone, acetone, acetic acid, ethylene-ester) |
Temperature range | -40°C / +100°C (short-term peak at +120°C) |
EPDM
As an Ethylene Propylene Diene Monomer copolymer, EPDM is commonly used for hot water taps, cooling systems, brake systems, dishwashers and washing machines.
Chemical resistance | Hot water and steam up to +150°C Glycol-based brake fluids (Dot 3 & 4) and silicone-based brake fluids (Dot 5) Organic and inorganic acids Cleaning agents, sodium and potassium alkalis Hydraulic fluids (HFD-R) Silicone oils and greases |
---|---|
Compatibility issue | Mineral oils and greases Hydrocarbons Low impermeability to gas |
Temperature range | -45°C / +150°C (short-term peak at +175°C) |
FFKM
FFKM has the best characteristics for resistance to high temperatures, with an excellent chemical inertia. This FKM-based rubber is very often used for high-temperature hydraulic and pneumatic systems, industrial valves, injection/fuel systems, motor seals and high-vacuum systems.
Chemical resistance | Aliphatic and aromatic hydrocarbons. Polar solvents (ketones, esters and ethers) Organic and inorganic acids. Water and steam. High-vacuum system. |
Compatibility issue | Coolants (R11, R12, R13, R113, R114, etc.) PFPE |
Temperature range | -15°C/+320°C |
FKM
Depending on their structure and fluorine content, the chemical resistance and resistance to the cold in fluororubbers can vary. This FKM-based rubber is very often used for high-temperature hydraulics and pneumatics, for industrial valves, injection/fuel systems, motor seals and high-vacuum systems.
Chemical resistance | Mineral oils and greases, ASTM n°1, IRM 902 and IRM 903 oils. Fire-resistant liquids (HFD) Silicone oils and greases. Mineral and vegetable oils and greases. Aliphatic hydrocarbons (propane, butane, petroleum) Aromatic hydrocarbons (benzene, toluene) Chlorinated hydrocarbons (trichlorethylene) Fuel (including high alcohol content) Atmospheric and ozone agents. |
Compatibility issue | Glycol-based brake fluids. Ammonia gas. Organic acids with a low molecular weight (formic and acetic acids) |
Temperature range | -20°C / +200°C (short-term peak at +230°C) -40°C / +200°C with particular FKMs |
FVMQ
The FVMQ has mechanical and physical properties that are very similar to those of the VMQ. However, the FVMQ offers better resistance to fuels and mineral oils. However, resistance to hot air is not as good as that of the VMQ.
Chemical resistance | Aromatic mineral oils (IRM 903 oil) Fuels. Aromatic hydrocarbons with low molecular weights. (benzene, toluene) |
Temperature range | -70°C/+175°C |
HNBR
This HNBR-based rubber is obtained through selective hydrogenation of the NBR’s butadiene groups. It is commonly used for power-assisted steering and for air conditioning.
Chemical resistance | Aliphatic hydrocarbons Mineral and vegetable oils and greases Fire-resistant fluids (HFA, HFB and HFC) Diluted acids, saline solutions and bases for operation at an average temperature Water and steam up to +150°C Atmospheric and ozone agents |
---|---|
Compatibility issue | Chlorinated hydrocarbons Polar solvents (ketones, esters and ethers) Strong acids |
Temperature range | -30°C / +150°C (short-term peak at +160°C) -40°C / +150°C with particular HNBRs |
NBR
Nitrile rubber (NBR) is the general term for acrylonitrile-butadiene copolymer. The ACN content can vary between 18% and 50%. While the acrylonitrile content is important, the resistance to oil and fuel is more so. Conversely, the elasticity and compression set are not as good. The NBR has good mechanical properties and good wear resistance. However, its resistance to atmospheric agents and the ozone is relatively low.
Chemical resistance | Aliphatic hydrocarbons (propane, butane, petroleum, diesel fuel) Mineral oils and greases Fire-resistant fluids (HFA, HFB and HFC) Diluted acids, low-temperature alkaline and saline solutions Water (up to +100°C max) |
---|---|
Compatibility issue | Fuels with high aromatic content Aromatic hydrocarbons (benzene) Chlorinated hydrocarbons (trichlorethylene) Polar solvents (ketone, acetone, acetic acid, ethylene-ester) Strong acids Glycol-based brake fluids Atmospheric and ozone agents |
Temperature range | -30°C / +100°C (short-term peak at +120°C) -40°C / +100°C with particular NBRs |
VMQ
This FVMQ-based rubber is very often used in fuel systems.
Chemical resistance | Animal and vegetable oils and greases. Water for operation at an average temperature. Diluted saline solutions. Atmospheric and ozone agents. |
Compatibility issue | Superheated steam up to +120°C Chlorinated hydrocarbons with a low molecular weight (trichlorethylene) Aromatic hydrocarbons (benzene, toluene) |
Temperature range | -60°C / +200°C (short-term peak at +230°C) |