TB2

  • TB2

  • Description

    Representation The TB2 profile is a shaft seal consisting of a single outer metal cage, a main sealing lip with an integral spring, and an additional anti-contamination sealing lip. * Good radial stiffness, especially for large diameters* Good assembly stability, preventing kickback effect* Sealing for low and high viscosity fluids* Modern primary sealing lip with low radial force* Protects against unwanted air pollutants Application Shaft sealingMotorPumpTransmission

TECHNICAL DATA

Temperature None -30°C/+100°C
Pressure None 30 MPa
Speed None 1.0 m/s
Medias None Mineral hydraulic oils

 

MATERIALS

METAL CAGE – SPRING

The table below shows the materials that we can offer for metal cages and springs.

Application Material Standard Characteristics
Metal cage Non-alloy standard steel AISI 1010
(DIN 1624)
Cold rolled steel
Metal cage Nickel chrome steel AISI 304
(DIN 1.4301 – V2A)
Standard stainless steel
Metal cage and spring Chrome-nickel-molybdenum steel AISI 316
(DIN 1.4401 – V4A)
Stainless steel highly resistant to corrosion
Spring Steel for springs AISI 1070 – 1090
DIN 17223
Cold drawn carbon steel wire
Spring Nickel chrome steel AISI 302
(DIN 1.4300)
Stainless steel for springs with a high carbon content

ACM

Polymers containing ethyl acrylate (or butyl acrylate) have a small amount of monomer, which is necessary for cross-linking; ACM is a material with better heat resistance than NBR. It is often used for automatic gearboxes.

Chemical resistance Mineral oils (motor oils, gear box oils, ATF oils)
Atmospheric and ozone agents
Compatibility issue Glycol-based brake fluids (Dot 3 & 4)
Aromatic and chlorinated hydrocarbons
Water and steam
Acids, alkalis and amines
Temperature range -25°C to + 150°C (short-term peak at +160°C)
-35°C / +150°C with particular ACMs

AEM

As a methyl acrylate and ethylene copolymer, AEM is considered to be more resistant to heat than ACM. Its characteristics make it an intermediary between ACM and FKM.

Chemical resistance Cooling fluids
Aggressive mineral oils
Atmospheric agents
Water
Compatibility issue Aromatic solvents
Strong acids
Brake fluids
Gearbox oils
ATF oils
Temperature range – 40°C to + 150°C

CR

This CR-based rubber is used in the refrigeration industry and for ventilation systems. This chloroprene was the first synthetic rubber to be developed and marketed.

Chemical resistance Paraffinic mineral oils.
Silicone oils and greases.
Water and water-based solvents for use at low temperatures
Refrigerant fluids.
Ammoniac.
Carbon dioxide.
Atmospheric and ozone agents.
Limited chemical resistance Naphthenic mineral oils.
Aliphatic hydrocarbons (propane, butane, petroleum)
Glycol-based brake fluids
Compatibility issue Aromatic hydrocarbons (benzene)
Chlorinated hydrocarbons (trichlorethylene)
Polar solvents (ketone, acetone, acetic acid, ethylene-ester)
Temperature range -40°C / +100°C (short-term peak at +120°C)

EPDM

As an Ethylene Propylene Diene Monomer copolymer, EPDM is commonly used for hot water taps, cooling systems, brake systems, dishwashers and washing machines.

Chemical resistance Hot water and steam up to +150°C
Glycol-based brake fluids (Dot 3 & 4) and silicone-based brake fluids (Dot 5)
Organic and inorganic acids
Cleaning agents, sodium and potassium alkalis
Hydraulic fluids (HFD-R)
Silicone oils and greases
Compatibility issue Mineral oils and greases
Hydrocarbons
Low impermeability to gas
Temperature range -45°C / +150°C (short-term peak at +175°C)

FFKM

FFKM has the best characteristics for resistance to high temperatures, with an excellent chemical inertia. This FKM-based rubber is very often used for high-temperature hydraulic and pneumatic systems, industrial valves, injection/fuel systems, motor seals and high-vacuum systems.

Chemical resistance Aliphatic and aromatic hydrocarbons.
Polar solvents (ketones, esters and ethers)
Organic and inorganic acids.
Water and steam.
High-vacuum system.
Compatibility issue Coolants (R11, R12, R13, R113, R114, etc.)
PFPE
Temperature range -15°C/+320°C

FKM

Depending on their structure and fluorine content, the chemical resistance and resistance to the cold in fluororubbers can vary. This FKM-based rubber is very often used for high-temperature hydraulics and pneumatics, for industrial valves, injection/fuel systems, motor seals and high-vacuum systems.

Chemical resistance Mineral oils and greases, ASTM n°1, IRM 902 and IRM 903 oils.
Fire-resistant liquids (HFD)
Silicone oils and greases.
Mineral and vegetable oils and greases.
Aliphatic hydrocarbons (propane, butane, petroleum)
Aromatic hydrocarbons (benzene, toluene)
Chlorinated hydrocarbons (trichlorethylene)
Fuel (including high alcohol content)
Atmospheric and ozone agents.
Compatibility issue Glycol-based brake fluids.
Ammonia gas.
Organic acids with a low molecular weight (formic and acetic acids)
Temperature range -20°C / +200°C (short-term peak at +230°C)
-40°C / +200°C with particular FKMs

FVMQ

The FVMQ has mechanical and physical properties that are very similar to those of the VMQ. However, the FVMQ offers better resistance to fuels and mineral oils. However, resistance to hot air is not as good as that of the VMQ.

Chemical resistance Aromatic mineral oils (IRM 903 oil)
Fuels.
Aromatic hydrocarbons with low molecular weights.
(benzene, toluene)
Temperature range -70°C/+175°C

HNBR

This HNBR-based rubber is obtained through selective hydrogenation of the NBR’s butadiene groups. It is commonly used for power-assisted steering and for air conditioning.

Chemical resistance Aliphatic hydrocarbons
Mineral and vegetable oils and greases
Fire-resistant fluids (HFA, HFB and HFC)
Diluted acids, saline solutions and bases for operation at an average temperature
Water and steam up to +150°C
Atmospheric and ozone agents
Compatibility issue Chlorinated hydrocarbons
Polar solvents (ketones, esters and ethers)
Strong acids
Temperature range -30°C / +150°C (short-term peak at +160°C)
-40°C / +150°C with particular HNBRs

NBR

Nitrile rubber (NBR) is the general term for acrylonitrile-butadiene copolymer. The ACN content can vary between 18% and 50%. While the acrylonitrile content is important, the resistance to oil and fuel is more so. Conversely, the elasticity and compression set are not as good. The NBR has good mechanical properties and good wear resistance. However, its resistance to atmospheric agents and the ozone is relatively low.

Chemical resistance Aliphatic hydrocarbons (propane, butane, petroleum, diesel fuel)
Mineral oils and greases
Fire-resistant fluids (HFA, HFB and HFC)
Diluted acids, low-temperature alkaline and saline solutions
Water (up to +100°C max)
Compatibility issue Fuels with high aromatic content
Aromatic hydrocarbons (benzene)
Chlorinated hydrocarbons (trichlorethylene)
Polar solvents (ketone, acetone, acetic acid, ethylene-ester)
Strong acids
Glycol-based brake fluids
Atmospheric and ozone agents
Temperature range -30°C / +100°C (short-term peak at +120°C)
-40°C / +100°C with particular NBRs

VMQ

This FVMQ-based rubber is very often used in fuel systems.

Chemical resistance Animal and vegetable oils and greases.
Water for operation at an average temperature.
Diluted saline solutions.
Atmospheric and ozone agents.
Compatibility issue Superheated steam up to +120°C
Chlorinated hydrocarbons with a low molecular weight (trichlorethylene)
Aromatic hydrocarbons (benzene, toluene)
Temperature range -60­°C / +200°C (short-term peak at +230°C)

Industry